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Abstract. A new framework for asset price dynamics is introduced in which
the concept of noisy information about future cash flows is used to derive the cor-
responding price processes. In this framework an asset is defined by its cash-flow
structure. Each cash flow is modelled by a random variable that can be expressed
as a function of a collection of independent random variables called market factors.
With each such market factor or “X-factor” we associate a so-called market infor-
mation process, the values of which we assume are accessible to market participants.
Each market information process consists of a sum of two terms; one contains true
information about the value of the associated market factor, and the other represents
“noise”. The noise term is modelled by an independent Brownian bridge process that
spans the time interval from the present to the time at which the value of the given
market factor is revealed. The market filtration is assumed to be that generated by
the aggregate of the independent market information processes. The price of an asset
is given by the expectation of the discounted cash flows in the risk neutral measure,
conditional on the information provided by the market filtration thus constructed.
In the case where the cash flows are the random dividend payments associated with
equities, an explicit model is obtained for the share-price process. Dividend growth
is taken into account by introducing appropriate structure on the market factors.
The prices of options on dividend-paying assets are derived. Remarkably, the re-
sulting formula for the price of a European-style call option is of the Black-Scholes
type. We consider both the case where the rate at which information is revealed to
the market is constant, as well as the case where the information flow rate varies in
time. Option pricing formulae are obtained for both cases. The information-based
framework has another significant consequence: it generates a natural explanation
for the origin of unhedgeable stochastic volatility in financial markets, without the
need for specifying on an ad hoc basis the stochastic dynamics of the volatility.
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I. INTRODUCTION

In derivative pricing, the starting point is usually the specification of a model for the price
process of the underlying asset. Such models generally tend to be of an ad hoc nature. For
example, in the Black-Scholes theory, the underlying asset has a geometric Brownian motion
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as its price process. More generally, but equally arbitrarily, the economy is often modelled
by a probability space equipped with the filtration generated by a multi-dimensional Brow-
nian motion, and it is assumed that asset prices are Ito processes that are adapted to this
filtration. This particular example is of course the “standard” model within which a great
deal of financial engineering has been carried out.

The basic methodological problem with the standard model (and the same applies to
various generalisations thereof) is that the market filtration is fixed once and for all, and
little or no comment is offered on the issue of “where it comes from”. In other words, the
filtration, which represents the unfolding of information available to market participants, is
modelled first, in an ad hoc manner, and then it is assumed that the asset price processes
are adapted to it. But no indication is given about the nature of this “information”, and it
is not at all obvious, a priori, why the Brownian filtration, for example, should be regarded
as providing information rather than simply noise.

To be sure, in a complete market there is a certain sense in which the Brownian filtration
provides all of the relevant information, and no irrelevant information. That is to say,
in a complete market based on a Brownian filtration the asset price movements precisely
reflect the information content of the filtration. Nevertheless, the notion that the market
filtration should in any simplistic sense be “prespecified” is an unsatisfactory one in financial
modelling. The usual intuition behind the “prespecified-filtration” approach is to imagine
that the filtration represents the unfolding in time of a succession of random events that
“influence” the markets, thus causing prices to change. For example, a spell of bad weather
in South America results in a decrease in the supply of coffee beans and hence an increase in
the price of coffee. Or, say, a spate of bad derivative deals causes a drop in client confidence
in investment banks, and hence a downgrade in earnings projections, and thus a drop in
the share prices of these firms. The idea is that one then “abstractifies” these various
influences in the form of a prespecified background filtration to which asset price processes
are assumed to be adapted. What is unsatisfactory about this is that so little structure
is given to the filtration: price movements behave as though they were spontaneous. In
reality, we expect the price-formation process to exhibit more structure. It would be out of
place, in the present context, to attempt anything like a complete account of the process
of price formation. Nevertheless, we can try to improve on the “prespecified” approach. In
that spirit we proceed as follows. We note that price changes arise from two rather distinct
sources. The first source of price change is that resulting from changes in market-agent
preferences—that is to say, changes in the pricing kernel. Movements in the pricing kernel
are associated with (a) changes in investor attitudes towards risk, and (b) changes in investor
“impatience”, i.e. the subjective discounting of future cash flows. But equally important,
if not more so, are those changes in price resulting from the revelation to market agents of
information about the future cash flows derivable from possession of a given asset.

When a market agent decides to buy or sell an asset, the decision is made in accordance
with the information available to the agent concerning the likely future cash flows associated
with the asset. A change in the information available to the market agent about a future
cash flow will typically have an effect on the price at which they are willing to buy or
sell, even if the agent’s preferences remain unchanged. Consider the situation where one
is thinking of purchasing an item at a price that seems attractive. But then, by chance,
one reads a newspaper article pointing out some undesirable feature of the product. After
some reflection, one decides that the price is not so attractive, and in fact that the item
is somewhat overpriced, considering the deficiencies that one is now aware of. As a result,
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one decides not to buy, not at that price, and eventually—possibly because many other
individuals also have read the same report—the price drops.

The movement of the price of an asset should, therefore, be regarded as an emergent
phenomenon. To put the matter another way, the price process of an asset should be viewed
as the output of (rather than an input into) the various decisions made relating to possible
transactions in the asset, and these decisions in turn should be understood as being induced
primarily by the flow of information to market participants.

Taking into account this elementary observation we propose in this paper the outlines
of a new framework for asset pricing based on modelling of the flow of market information.
The information, more specifically, is that concerning the values of the future cash flows
associated with the given assets. For example, if the asset represents a share in a firm
that will make a single distribution at some pre-agreed date, then there is a single cash
flow corresponding to the random amount of the distribution. If the asset is a credit-risky
discount bond, then the future cash flow is the payout of the bond at the maturity date.
In each case, based on the information available relating to the likely payouts of the given
financial instrument, market participants determine, as best as they can, estimates for the
value of the right to the impending cash flows. These estimates, in turn, lead to decisions
concerning transactions, which then trigger movements in the price.

In this paper we present a simple class of models capturing the essence of the scenario
described above. In building the framework described in what follows we have several criteria
in mind that we would like to see satisfied. The first of these is that our model for the flow
of market information should be intuitively appealing, and should allow for a reasonably
sophisticated account of aggregate investor behaviour. At the same time, the model should
be simple enough to allow one to derive explicit expressions for the asset price processes thus
induced, in a suitably rich range of examples, as well as for various associated derivative
price processes. The framework should also be flexible enough to allow for the modelling of
assets having complex cash-flow structures. Furthermore, it should be suitable for practical
implementation, with the property that calibration and pricing can be carried out swiftly
and robustly, at least for more elementary structures. We would like the framework to be
mathematically sound, and to be manifestly arbitrage-free. In what follows we shall show
how our modelling framework goes a long way towards satisfying these diverse criteria.

The role of information in financial modelling has long been appreciated, particularly in
the theory of market microstructure (see, e.g., Back [1], Back and Baruch [2], and references
cited therein). The present framework is perhaps most closely related to the line of inves-
tigation represented, e.g., in Cetin, et al. [5], Duffie and Lando [9], Giesecke [10], Giesecke
and Goldberg [11], Guo, et al. [13], and Jarrow and Protter [14]. The work in this paper,
in particular, extends that described in Brody, et al. [3] (see also Rutkowski and Yu [20]).

The paper is organised as follows. In Section II we illustrate the basic framework for
information-based pricing by considering the scenario in which there is a single random
cash flow occurring at a designated time in the future. An elementary model for market
information is presented, based on the specification of a process composed of two parts:
a “signal” component containing true information about the upcoming cash flow, and an
independent “noise” component which we model in a specific way. A closed-form expression
for the asset price is obtained in terms of the market information available at the time the
price is being specified. This result is summarised in Proposition 1. In Section III we show
that the resulting asset price process is driven by a Brownian motion, an expression for which
can be obtained in terms of the market information process: this construction indicates
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in explicit terms the sense in which the price process can be viewed as an “emergent”
phenomenon. In Section IV we show that the value of a European-style call option, in the
case of an asset with a single cash flow, admits a simple formula analogous to that of the
Black-Scholes model. In Section V we derive pricing formulae for the situation when the
random variable associated with the single cash flow has an exponential distribution or,
more generally, a gamma distribution.

The extension of the framework to assets associated with multiple cash flows is established
in Section VI. We show, in particular, that once the relevant cash flows are decomposed in
terms of a collection of independent market factors, then a closed-form expression for the
asset price associated with a complex cash-flow structure can be obtained. Moreover, by
allowing distinct assets to share one or more common market factors in the determination
of one or more of their respective cash flows, we obtain a natural correlation structure
for the associated asset price processes. This method for introducing correlation in asset
price movements contrasts sharply with the ad hoc approach adopted in most financial
modelling. In Section VII we demonstrate that if two or more market factors affect the
future cash flows associated with an asset, then the corresponding price process will exhibit
unhedgeable stochastic volatility. This result is noteworthy because even for the class of
relatively simple models considered here it is possible to identify a plausible candidate for
the origin of stochasticity in price volatility, as well as the specific form it should take, which
is given in Proposition 2.

In the remaining sections of the paper we generalise the previous discussion to the case
where the rate at which the information concerning the true value of an impending cash flow
is revealed is time dependent. The introduction of a time-dependent information flow rate
adds additional flexibility to the modelling framework, and opens the door to the possibility
of calibrating the resulting models to the market prices of families of options. We consider the
single-factor case first, and obtain a closed-form expression for the conditional expectation of
the cash flow. The result is stated first in Section VIII as Proposition 3, and the derivation
is then given in the two sections that follow. Specifically in Section IX we introduce a new
measure appropriate for the consideration of a Brownian bridge process with a random drift,
which is used in Section X to obtain an expression for the conditional probability density
function of the random cash flow. The dynamical consistency of the resulting asset price
process is established in Section XI. We show, in particular, that, for the given information
process, if we re-initialise the model at some specified future time, the dynamics of the model
moving forward from that time can be represented by a suitably re-initialised information
process. The precise statement of this result is given in Proposition 4.

The dynamical equation satisfied by the price process is analysed in Section XII, where
we demonstrate in Proposition 5 that the driving process is a Brownian motion, just as in the
constant parameter case. In Section XIII we derive the pricing formula for a European-style
call option in the case for which the information flow rate is time dependent.

Our framework is based on the idea that first one models the cash flows, then the infor-
mation processes, then the market filtration, and finally the price processes. In Section XIV,
however, we solve the corresponding “inverse” problem. The result is stated in Proposition 6.
Starting from the dynamics of the conditional probability distribution of the impending pay-
off, which is driven by a Brownian motion adapted to the market filtration, we construct
(a) the random variable that represents the relevant market factor, and (b) an independent
Brownian bridge process representing irrelevant information. These two then combine to
generate the market filtration. We conclude in Section XV with a general multi-factor ex-
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tension of the time-dependent setup, for which the dynamics of the resulting price processes
are given in Propositions 7 and 8.

II. THE MODELLING FRAMEWORK

In asset pricing we require three basic ingredients, namely, (a) the cash flows, (b) the
investor preferences, and (c) the flow of information available to market participants. Trans-
lated into somewhat more mathematical language, these ingredients amount to the following:
(a′) cash flows are modelled as random variables; (b′) investor preferences are modelled with
the determination of a pricing kernel; and (c′) the market information flow is modelled with
the specification of a filtration. As we have indicated above, asset pricing theory convention-
ally attaches more weight to (a) and (b) than to (c). In this paper, however, we emphasise
the importance of ingredient (c).

Our theory will be based on modelling the flow of information accessible to market par-
ticipants concerning the future cash flows associated with the possession of an asset, or with
a position in a financial contract. We start by setting the notation and introducing the
assumptions employed in this paper. We model the financial markets with the specification
of a probability space (Ω,F , Q) on which a filtration {Ft}0≤t<∞ will be constructed. The
probability measure Q is understood to be the risk-neutral measure, and the filtration {Ft}
is understood to be the market filtration. All asset-price processes and other information-
providing processes accessible to market participants will be adapted to {Ft}. We do not
regard {Ft} as something handed to us on a platter. Instead, it will be modelled explicitly.
This will be undertaken shortly.

Several simplifying assumptions will be made. These assumptions should be regarded
as being merely temporary, so that we can concentrate our efforts on the problems asso-
ciated with the flow of market information. The first of these assumptions is the use of
the risk-neutral measure. The “real” probability measure does not enter into the present
investigation. We leap over that part of the economic analysis that determines the pricing
measure. More specifically, we assume the absence of arbitrage and the existence of an es-
tablished pricing kernel (see, e.g., Cochrane 2005, and references cited therein). With these
conditions the existence of a unique risk-neutral pricing measure Q is ensured, even though
the markets we consider will, in general, be incomplete.

Our second assumption is that we take the default-free system of interest rates to be
deterministic. This is not to say that interest rate stochasticity should be ignored. Our
view is rather that we should first develop our framework in a simplified setting, where
certain essentially macroeconomic issues are put to one side; then, once we are satisfied with
the tentative framework, we can attempt to generalise it in such a way as to address these
issues. We therefore assume a deterministic default-free discount bond system. The absence
of arbitrage implies that the corresponding system of discount functions {PtT}0≤t≤T<∞ can
be written in the form PtT = P0T /P0t for t ≤ T , where {P0t}0≤t<∞ is the initial discount
function, which we take to be part of the initial data of the model. The function {P0t}0≤t<∞
is assumed to be differentiable and strictly decreasing, and to satisfy 0 < P0t ≤ 1 and
limt→∞ P0t = 0. These conditions can be relaxed somewhat for certain applications.

We also assume, for simplicity, that all cash flows occur at pre-determined dates. Now
clearly for some purposes we would like to allow for cash flows occurring effectively at random
times—in particular, at stopping times associated with the market filtration. But in the
present exposition we want to avoid the idea of a “prespecified” filtration with respect to
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which stopping times are defined. We take the view that the market filtration is a “derived”
notion, generated by information about impending cash flows, and by the actual values of
cash flows when they occur. In the present paper we regard a “randomly-timed” cash flow
as being a set of random cash flows occurring at various times—and with a joint distribution
function that ensures only one of these flows is non-zero. Hence in our view the ontological
status of a cash flow is that its timing is definite, only the amount is random—and that cash
flows occurring at different times are, by their nature, different cash flows.

Modelling the cash flows. First we consider the case of a single isolated cash flow
occurring at time T , represented by a random variable DT . We assume that DT ≥ 0. The
value St of the cash flow at any earlier time t in the interval 0 ≤ t < T is then given by the
discounted conditional expectation of DT :

St = PtT EQ [DT |Ft] . (1)

In this way we model the price process {St}0≤t<T of a limited-liability asset that pays the
single dividend DT at time T . The construction of the price process here is carried out in
such a way as to guarantee an arbitrage-free market if other assets are priced by the same
method (see Davis [7] for a closely related point of view). With a slight abuse of terminology
we shall use the terms “cash flow” and “dividend” more or less interchangeably. If a more
specific use of one of these terms is needed, then this will be evident from the context. We
adopt the convention that when the dividend is paid the asset price goes “ex-dividend”
immediately. Hence in the example above we have limt→T St = DT and ST = 0.

In the case that the asset pays a sequence of dividends DTk
(k = 1, 2, . . . , n) on the dates

Tk the price (for values of t earlier than the time of the first dividend) is given by

St =
n∑

k=1

PtTk
EQ [DTk

|Ft] . (2)

More generally, for all t ≥ 0, and taking into account the ex-dividend behaviour, we have

St =
n∑

k=1

1{t<Tk}PtTk
EQ [DTk

|Ft] . (3)

It turns out to be useful if we adopt the convention that a discount bond also goes ex-
dividend on its maturity date. Thus in the case of a discount bond we assume that the price
of the bond is given, for dates earlier than the maturity date, by the product of the principal
and the relevant discount factor. But at maturity (when the principal is paid out) the value
of the bond drops to zero. In the case of a coupon bond, there is likewise a downward jump
in the price of the bond at the time a coupon is paid (the value lost may be captured back
in the form of an “accrued interest” payment). In this way we obtain a consistent treatment
of the “ex-dividend” behaviour of all of the asset price processes under consideration here.
With this convention it follows, in particular, that all price processes have the property that
they are right continuous with left limits.

Modelling the information flow. Now we present a simple model for the flow of
market information. We consider first the case of a single distribution, occurring at time
T , and assume that market participants have only partial information about the upcoming
cash flow DT . The information available in the market about the cash flow is assumed to
be contained in a process {ξt}0≤t≤T defined by:

ξt = σDT t + βtT . (4)
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We call {ξt} the market information process. The information process is composed of two
parts. The term σDT t contains the “true information” about the upcoming dividend. This
term grows in magnitude as t increases. The process {βtT}0≤t≤T is a standard Brownian
bridge over the time interval [0, T ]. Thus β0T = 0, βTT = 0, and at time t the random
variable βtT has mean zero and variance t(T − t)/T ; the covariance of βsT and βtT for s ≤ t
is s(T − t)/T . We assume that DT and {βtT} are independent. Thus the information
contained in the bridge process is “pure noise”. The information contained in {ξt} is clearly
unchanged if we multiply {ξt} by some overall scale factor.

We assume that the market filtration {Ft} is generated by the market information process.

That is to say, we assume that {Ft} = {F ξ
t }, where {F ξ

t } is the filtration generated by {ξt}.
The dividend DT is therefore FT -measurable, but is not Ft-measurable for t < T . Thus
the value of DT becomes “known” at time T , but not earlier. The bridge process {βtT} is
not adapted to {Ft} and thus is not directly accessible to market participants. This reflects
the fact that until the dividend is paid the market participants cannot distinguish the “true
information” from the “noise” in the market.

The introduction of the Brownian bridge models the fact that market perceptions,
whether valid or not, play a role in determining asset prices. Initially, all available in-
formation is used to determine the a priori risk-neutral probability distribution for DT .
Then after the passage of time rumours, speculations, and general disinformation start cir-
culating, reflected in the steady increase in the variance of the Brownian bridge. Eventually
the variance drops and falls to zero at the time the distribution to the share-holders is made.
The parameter σ represents the rate at which information about the true value of DT is re-
vealed as time progresses. If σ is low, the value of DT is effectively hidden until very near
the time of the dividend payment; whereas if σ is high, then the value of the cash flow is for
all practical purposes revealed very quickly.

In the example under consideration we have made some simplifying assumptions con-
cerning our choice for the market information structure. For instance, we assume that σ is
constant. In Section XII we consider a time-dependent market information flow rate. We
have also assumed that the random dividend DT enters directly into the structure of the
information process, and enters linearly. As we shall indicate later, a more general and in
some respects more natural setup is to let the information process depend on a random
variable XT which we call a “market factor”; then the dividend is regarded as a function
of the market factor. This arrangement has the advantage that it easily generalises to the
situation where a cash flow might depend on several independent market factors, or indeed
where cash flows associated with different financial instruments have one or more market
factors in common. But for the moment we regard the single cash flow DT as being the
relevant market factor, and we assume the information-flow rate to be constant.

With the market information structure described above for a single cash flow in place, we
proceed to construct the associated price dynamics. The price process {St} for a share in
the firm paying the specified dividend is given by formula (1). It is assumed that the a priori
probability distribution of the dividend DT is known. This distribution is regarded as part
of the initial data of the problem, which in some cases can be calibrated from knowledge of
the initial price of the asset along possibly with other price data. The general problem of
how the a priori distribution is obtained is an important one—any asset pricing model has to
confront some version of this issue—which we defer for later consideration. The main point
is that the initial distribution is not to be understood as being “absolutely” determined, but
rather represents the “best estimate” for the distribution given the data available at that
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time, in accordance with what one might call a Bayesian point of view. We note the fact
that the information process {ξt} is Markovian (see Brody, et al. [3], and Rutkowski and
Yu [20]). Making use of this property of the information process together with the fact that
DT is FT -measurable we deduce that

St = 1{t<T}PtT EQ [DT |ξt] . (5)

If the random variable DT that represents the payoff has a continuous distribution, then the
conditional expectation in (5) can be expressed in the form

EQ [DT |ξt] =

∫ ∞

0

xπt(x) dx. (6)

Here πt(x) is the conditional probability density for the random variable DT :

πt(x) =
d

dx
Q(DT ≤ x|ξt). (7)

We implicitly assume throughout the paper appropriate technical conditions on the distri-
bution of the dividend that will suffice to ensure the existence of the expressions under
consideration. Also, for convenience we use a notation appropriate for continuous distribu-
tions, though corresponding results can easily be inferred for discrete distributions, or more
general distributions, by slightly modifying the stated assumptions and conclusions.

Bearing in mind these points, we note that the conditional probability density process
for the dividend can be worked out explicitly by use of a form of the Bayes formula:

πt(x) =
p(x)ρ(ξt|DT = x)∫∞

0
p(x)ρ(ξt|DT = x)dx

. (8)

Here p(x) denotes the a priori probability density function for DT , which we assume is
known as an initial condition, and ρ(ξt|DT = x) denotes the conditional density function for
the random variable ξt given that DT = x. Since βtT is a Gaussian random variable with
variance t(T − t)/T , we deduce that the conditional probability density for ξt is

ρ(ξt|DT = x) =

√
T

2πt(T − t)
exp

(
−(ξt − σtx)2T

2t(T − t)

)
. (9)

Inserting the expression into the Bayes formula we get

πt(x) =
p(x) exp

[
T

T−t
(σxξt − 1

2
σ2x2t)

]∫∞
0

p(x) exp
[

T
T−t

(σxξt − 1
2
σ2x2t)

]
dx

. (10)

We thus obtain the following result for the asset price:

Proposition 1. The information-based price process {St}0≤t≤T of a limited-liability asset
that pays a single dividend DT at time T with a priori distribution

Q(DT ≤ y) =

∫ y

0

p(x) dx (11)

is given by

St = 1{t<T}PtT

∫∞
0

xp(x) exp
[

T
T−t

(σxξt − 1
2
σ2x2t)

]
dx∫∞

0
p(x) exp

[
T

T−t
(σxξt − 1

2
σ2x2t)

]
dx

, (12)

where ξt = σDT t + βtT is the market information.
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III. ASSET PRICE DYNAMICS IN THE CASE OF A SINGLE CASH FLOW

In order to analyse the properties of the price process deduced above, and to be able
to compare it with other models, we need to work out the dynamics of {St}. One of the
advantages of the model under consideration is that we have a completely explicit expression
for the price process at our disposal. Thus in obtaining the dynamics we need to find the
stochastic differential equation of which {St} is the solution. This turns out to be an
interesting exercise because it offers some insights into what we mean by the assertion that
market price dynamics should be regarded as constituting an “emergent phenomenon”.

To obtain the dynamics associated with the price process {St} of a single-dividend paying
asset let us write

DtT = EQ[DT |ξt] (13)

for the conditional expectation of DT with respect to the market information ξt. Evidently,
DtT can be expressed in the form DtT = D(ξt, t), where the function D(ξ, t) is defined by

D(ξ, t) =

∫∞
0

xp(x) exp
[

T
T−t

(σxξ − 1
2
σ2x2t)

]
dx∫∞

0
p(x) exp

[
T

T−t
(σxξ − 1

2
σ2x2t)

]
dx

. (14)

A straightforward calculation making use of the Ito rules shows that the dynamical equation
for the conditional expectation {DtT} is given by

dDtT =
σT

T − t
Vt

[
1

T − t

(
ξt − σTDtT

)
dt + dξt

]
. (15)

Here Vt is the conditional variance of the dividend:

Vt =

∫ ∞

0

x2πt(x) dx−
(∫ ∞

0

xπt(x) dx

)2

. (16)

Therefore, if we define a new process {Wt}0≤t<T by setting

Wt = ξt −
∫ t

0

1

T − s

(
σTDtT − ξs

)
ds, (17)

we find, after some rearrangement of terms, that

dDtT =
σT

T − t
VtdWt. (18)

For the dynamics of the asset price process we thus have

dSt = rtStdt + ΓtT dWt, (19)

where the short rate rt is given by rt = −d ln P0t/dt, and the absolute price volatility ΓtT is

ΓtT = PtT
σT

T − t
Vt. (20)
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A slightly different way of arriving at this result is as follows. We start with the condi-
tional probability process πt(x). Then, using the same notation as above, for the dynamics
of πt(x) we obtain

dπt(x) =
σT

T − t
(x−DtT )πt(x) dWt. (21)

Since the asset price is given by

St = 1{t<T}PtT

∫ ∞

0

xπt(x) dx, (22)

we are thus able to infer the dynamics of the price {St} from the dynamics of the conditional
probability {πt(x)}, once we take into account the formula for the conditional variance.

As we shall demonstrate later, the process {Wt} defined in (17) is an {Ft}-Brownian
motion. Hence from the point of view of the market it is the process {Wt} that drives the
asset price dynamics. In this way our framework resolves the somewhat paradoxical point
of view usually adopted in financial modelling in which {Wt} is regarded as “noise”, and
yet also generates the market information flow. And thus, instead of simply hypothesising
the existence of a driving process for the dynamics of the markets, we are able from the
information-based perspective to deduce the existence of such a process.

The information-flow parameter σ determines the overall magnitude of the volatility. In
fact, the parameter σ plays a role that is in many respects analogous to the similarly-labelled
parameter in the Black-Scholes theory. Thus, we can say that the rate at which information
is revealed in the market determines the overall magnitude of the market volatility. In other
words, everything else being the same, if we increase the information flow rate, then the
market volatility will increase as well. It is ironic that, according to this point of view, those
mechanisms that one might have thought were destined to make markets more efficient—e.g.,
globalisation of the financial markets, reduction of trade barriers, improved communications,
a more robust regulatory environment, and so on—can have the effect of increasing market
volatility, and hence market risk, rather than reducing it.

IV. EUROPEAN-STYLE CALL OPTIONS

Before we turn to the consideration of more general cash flows and more general market
information structures, let us consider the problem of pricing a derivative on an asset for
which the price process is governed by the dynamics (19). It turns out that a complete
treatment of this problem can be given. Specifically, we consider the valuation problem for
a European-style call option on such an asset, with strike price K, and exercisable at a fixed
maturity date t. The option is written on an asset that pays a single dividend DT at time
T > t. The value of the option at time 0 is clearly

C0 = P0tEQ [
(St −K)+

]
. (23)

Inserting the information-based expression for the price St derived in the previous section
into this formula, we obtain

C0 = P0t EQ

[(
PtT

∫ ∞

0

x πt(x)dx−K

)+
]

. (24)
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For convenience we write the conditional probability πt(x) in the form

πt(x) =
pt(x)∫∞

0
pt(x)dx

, (25)

where the “unnormalised” density process {pt(x)} is defined by

pt(x) = p(x) exp

[
T

T − t

(
σxξt − 1

2
σ2x2t

)]
. (26)

Substituting (26) into (24) we find that the initial value of the option is given by

C0 = P0tEQ

[
1

Λt

(∫ ∞

0

(PtT x−K) pt(x)dx

)+
]

, (27)

where

Λt =

∫ ∞

0

pt(x)dx. (28)

The random variable Λt can be used to introduce a measure BT applicable over the time
horizon [0, t], which we call the “bridge measure”. The call option price can thus be written:

C0 = P0tEBT

[(∫ ∞

0

(PtT x−K) pt(x)dx

)+
]

. (29)

The special feature of the bridge measure, as we shall establish in Section IX in a somewhat
more general context, is that the random variable ξt is Gaussian under BT . In particular,
under the measure BT we find that {ξt} has mean 0 and variance t(T − t)/T . Since pt(x)
can be expressed as a function of ξt, when we carry out the expectation above we are led to
a tractable formula for C0.

To obtain the value of the option we define a constant ξ∗ (the critical value) by the
following condition:∫ ∞

0

(PtT x−K) p(x) exp

[
T

T − t

(
σxξ∗ − 1

2
σ2x2t

)]
dx = 0. (30)

Then the option price is given by:

C0 = P0T

∫ ∞

0

x p(x) N
(
− z∗ + σx

√
τ
)
dx− P0tK

∫ ∞

0

p(x) N
(
− z∗ + σx

√
τ
)
dx, (31)

where

τ =
tT

T − t
, z∗ = ξ∗

√
T

t(T − t)
, (32)

and N(x) denotes the standard normal distribution function. We see that a tractable ex-
pression is obtained, and that it is of the Black-Scholes type. The option pricing problem,
even for general p(x), reduces to an elementary numerical problem. It is interesting to note
that although the probability distribution for the price St at time t is not of a “standard”
type, nevertheless the option valuation problem remains a solvable one.
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V. EXAMPLES OF SPECIFIC DIVIDEND STRUCTURES

In this section we consider the dynamics of assets with various specific dividend structures.
First we look at a simple asset for which the cash flow is exponentially distributed. The a
priori probability density for DT is thus of the form

p(x) =
1

δ
exp (−x/δ) , (33)

where δ is a constant. The idea of an exponentially distributed payout is of course somewhat
artificial. Nevertheless we can regard this as a useful model for the situation where little is
known about the probability distribution of the dividend, apart from its mean. Then from
formula (12) we find that the corresponding asset price is given by:

St = 1{t<T}PtT

∫∞
0

x exp(−x/δ) exp
[

T
T−t

(σxξt − 1
2
σ2x2t)

]
dx∫∞

0
exp(−x/δ) exp

[
T

T−t
(σxξt − 1

2
σ2x2t)

]
dx

. (34)

We note that S0 = P0T δ, so we can calibrate the choice of δ by use of the initial price.
The integrals in the numerator and denominator in the expression above can be worked out
explicitly. Hence, we obtain a closed-form expression for the asset price in the case of a
simple asset with an exponentially-distributed terminal cash flow. This is given by:

St = 1{t<T}PtT

[
exp

(
−1

2
B2

t /At

)
√

2πAt N(Bt/
√

At)
+

Bt

At

]
, (35)

where At = σ2tT/(T − t) and Bt = σTξt/(T − t)− δ−1.
Next we consider the case of an asset for which the single dividend paid at time T is

gamma-distributed. More specifically, we assume the probability density is of the form

p(x) =
δn

(n− 1)!
xn−1 exp(−δx), (36)

where δ is a positive real number and n is a positive integer. This choice for the probability
density also leads to a closed-form expression for the share price. We find that

St = 1{t<T}PtT

n∑
k=0

(
n
k

)
A

1
2
k−n

t Bn−k
t Fk(−Bt/

√
At)

n−1∑
k=0

(
n−1

k

)
A

1
2
k−n+1

t Bn−k−1
t Fk(−Bt/

√
At)

, (37)

where At and Bt are as above, and

Fk(x) =

∫ ∞

x

zk exp
(
−1

2
z2

)
dz. (38)

A recursion formula can be worked out for the function Fk(x). This is given by

(k + 1)Fk(x) = Fk+2(x)− xk+1 exp
(
−1

2
x2

)
, (39)

from which it follows that F0(x) =
√

2πN(−x), F1(x) = e−
1
2
x2

, F2(x) = xe−
1
2
x2

+
√

2πN(−x),

F3(x) = (x2 + 2)e−
1
2
x2

, and so on. In general, the polynomial parts of {Fk(x)}k=0,1,2,... are
related to the Legendre polynomials.



13

VI. MULTIPLE CASH FLOWS

In this section we generalise the preceding material to the situation where the asset pays
multiple dividends. This will allow us to consider a wider range of financial instruments.
Let us write DTk

(k = 1, . . . , n) for a set of random cash flows paid at the pre-designated
dates Tk (k = 1, . . . , n). Thus possession of the asset at time t entitles the bearer to the
cash flows occurring at times Tk > t. For simplicity we assume n is finite, although with
technical refinements the extension to infinite sequences of cash flows is also possible. For
each value of k we introduce a set of independent random variables Xα

Tk
(α = 1, . . . ,mk),

which we call market factors or X-factors. For each value of α we assume that the market
factor Xα

Tk
is FTk

-measurable, where {Ft} is the market filtration.
Intuitively speaking, for each value of k the market factors {Xα

Tj
}j≤k represent the inde-

pendent elements that determine the cash flow occurring at time Tk. Thus for each value of
k the cash flow DTk

is assumed to have the following structure:

DTk
= ∆Tk

(Xα
T1

, Xα
T2

, ..., Xα
Tk

), (40)

where ∆Tk
(Xα

T1
, Xα

T2
, ..., Xα

Tk
) is a function of

∑k
j=1 mj variables. For each cash flow it is, so

to speak, the job of the financial analyst (or actuary) to determine the relevant independent
market factors, and the form of the cash-flow function ∆Tk

for each cash flow. With each
market factor Xα

Tk
we associate an information process {ξα

tTk
}0≤t≤Tk

of the form

ξα
tTk

= σα
Tk

Xα
Tk

t + βα
tTk

. (41)

Here σα
Tk

is an information flux parameter, and {βα
tTk
} is a standard Brownian bridge process

over the interval [0, Tk]. We assume that the X-factors and the Brownian bridge processes
are all independent of one another. The parameter σα

Tk
determines the rate at which the

true information about the value of the market factor Xα
Tk

is revealed. The Brownian bridge
βα

tTk
represents the associated noise. We assume that the market filtration {Ft} is generated

by the totality of the independent information processes {ξα
tTk
}0≤t≤Tk

for k = 1, 2, . . . , n and
α = 1, 2, . . . ,mk. Hence, the price process of the asset is given by

St =
n∑

k=1

1{t<Tk}PtTk
EQ

[
DTk

∣∣∣∣Ft

]
. (42)

Dividend growth. As an elementary example of a multi-dividend structure, we shall
look at a simple growth model for dividends in the equity markets. We consider an asset
that pays a sequence of dividends DTk

, where each dividend date has an associated X-factor.
Let {XTk

}k=1,...,n be a set of independent, identically-distributed X-factors, each with mean
1 + g. The dividend structure is assumed to be of the form

DTk
= D0

k∏
j=1

XTj
, (43)

where D0 is a constant. The parameter g can be interpreted as the dividend growth factor,
and D0 can be understood as representing the most recent dividend before time zero. For
the price process of the asset we have:

St = D0

n∑
k=1

1{t<Tk}PtTk
EQ

[
k∏

j=1

XTj

∣∣∣∣Ft

]
. (44)
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Since the X-factors are independent of one another, the conditional expectation of the
product appearing in this expression factorises into a product of conditional expectations,
and each such conditional expectation can be written in the form of an expression of the
type we have already considered. As a consequence we are led to a completely tractable
family of dividend growth models.

Assets with common factors. The multiple-dividend asset pricing model introduced
in this section can be extended in a very natural way to the situation where two or more
assets are being priced. In this case we consider a collection of N assets with price processes

{S(i)
t }i=1,2,...,N . With asset number (i) we associate the cash flows {D(i)

Tk
} paid at the dates

{Tk}k=1,2,...,n. We note that the dates {Tk}k=1,2,...,n are not tied to any one specific asset,
but rather represent the totality of possible cash-flow dates of any of the given assets. If
a particular asset has no cash flow on one of the given dates, then it is simply assigned
a zero cash-flow for that date. From this point, the theory proceeds exactly as in the
single asset case. That is to say, with each value of k we associate a set of X-factors Xα

Tk

(α = 1, 2, . . . ,mk), and a corresponding system of market information processes, {ξα
tTk
}. The

X-factors and the information processes are not tied to any particular asset. The cash flow

D
(i)
Tk

occurring at time Tk for asset number (i) is assumed to be given by a cash flow function
of the form

D
(i)
Tk

= ∆
(i)
Tk

(Xα
T1

, Xα
T2

, ..., Xα
Tk

). (45)

In other words, for each asset each cash flow can depend on all of the X-factors that have
been “activated” at that point. In particular, it is possible for two or more assets to “share”
an X-factor in association with one or more of the cash flows of each of the assets. This in
turn implies that the various assets will have at least one Brownian motion in common in
the dynamics of their price processes. As a consequence we thus obtain a natural model for
the existence of correlation structures in the prices of these assets. The intuition is that as
new information comes in (whether “true” or “bogus”) there will be several different assets
all affected by the news, and as a consequence there will be a correlated movement in their
prices. Thus for the general multi-asset model we have the following price process system:

S
(i)
t =

n∑
k=1

1{t<Tk}PtTk
EQ

[
D

(i)
Tk
|Ft

]
. (46)

VII. ORIGIN OF UNHEDGEABLE STOCHASTIC VOLATILITY

Based on the general model introduced in the previous section, we are now in a position
to make an interesting observation concerning the nature of stochastic volatility in the equity
markets. In particular, we shall show how unhedgeable stochastic volatility arises naturally
in the information-based framework. This is achieved without the need for any ad hoc
assumptions concerning the dynamics of the stochastic volatility. In fact, a very specific
dynamical model for stochastic volatility is obtained—thus leading to a possible means by
which the theory proposed here might be tested.

We shall work out the volatility associated with the dynamics of the general asset price
process {St} given by equation (42). The result is given in Proposition 2 below. First, as an
example, we consider the dynamics of an asset that pays a single dividend DT at time T .
We assume that the dividend depends on a set of market factors {Xα

T }α=1,...,m. For t < T
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we then have:

St = PtT EQ [
∆T

(
X1

T , . . . , Xm
T

)∣∣ ξ1
tT , . . . , ξm

tT

]
= PtT

∫
· · ·

∫
∆T (x1, . . . , xm) π1

tT (x1) · · ·πm
tT (xm) dx1 · · · dxm. (47)

Here the various conditional probability density functions πα
tT (x) for α = 1, . . . ,m are

πα
tT (x) =

pα(x) exp
[

T
T−t

(
σα x ξα

tT − 1
2
(σα)2 x2t

)]∫∞
0

pα(x) exp
[

T
T−t

(
σα x ξα

tT − 1
2
(σα)2 x2t

)]
dx

, (48)

where pα(x) denotes the a priori probability density function for the market factor Xα
T .

The drift of {St}0≤t<T is given by the short rate of interest. This is because Q is the risk-
neutral measure, and no dividend is paid before T . Thus, we are left with the problem of
determining the volatility of {St}. We find that for t < T the dynamical equation of {St}
assumes the following form:

dSt = rtStdt +
m∑

α=1

Γα
tT dWα

t . (49)

Here the volatility term associated with factor number α is given by

Γα
tT = σα T

T − t
PtT Cov

[
∆T

(
X1

T , . . . , Xm
T

)
, Xα

T

∣∣Ft

]
, (50)

and {W α
t } denotes the Brownian motion associated with the information process {ξα

t }, as
defined in (17). The absolute volatility of {St} is evidently of the form

Γt =

(
m∑

α=1

(Γα
tT )2

)1/2

. (51)

For the dynamics of a multi-factor single-dividend paying asset we can thus write

dSt = rtStdt + ΓtdZt, (52)

where the {Ft}-Brownian motion {Zt} that drives the asset-price process is defined by

Zt =

∫ t

0

1

Γs

m∑
α=1

Γα
sT dWα

s . (53)

The key point to note here is that in the case of a multi-factor model we obtain an un-
hedgeable stochastic volatility. That is to say, although the asset price is in effect driven
by a single Brownian motion, its volatility in general depends on a multiplicity of Brownian
motions. This means that in general an option position cannot be hedged with a position
in the underlying asset. The components of the volatility vector are given by the covari-
ances of the terminal cash flow and the independent market factors. Unhedgeable stochastic
volatility thus emerges from the multiplicity of uncertain elements in the market that affect
the value of the future cash flow. As a consequence we see that in this framework we obtain
a natural explanation for the origin of stochastic volatility in the equity markets.
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This result can be contrasted with, say, the Heston model [12], which despite its wide
popularity suffers somewhat from the fact that it is essentially ad hoc in nature. Much the
same has to be said for the various generalisations of the Heston model that have been so
widely used in commercial applications. The approach to stochastic volatility proposed in
the present paper is thus of a fundamentally new character.

Expression (49) generalises naturally to the case for which the asset pays a set of dividends

DTk
(k = 1, . . . , n), and for each k the dividend depends on the X-factors {{Xα

Tj
}α=1,...,mj

j=1,...,k }.
The result can be summarised as follows.

Proposition 2. The price process of a multi-dividend asset has the following dynamics:

dSt = rt St dt +
n∑

k=1

mk∑
α=1

1{t<Tk}
σα

k Tk

Tk − t
PtTk

Cov
[
∆Tk

, Xα
Tk

∣∣Ft

]
dWαk

t

+
n∑

k=1

∆Tk
d1{t<Tk}, (54)

where ∆Tk
= ∆Tk

(Xα
T1

, Xα
T2

, · · · , Xα
Tk

) is the dividend at time Tk (k = 1, 2, . . . , n).

VIII. TIME-DEPENDENT INFORMATION FLUX

In the remainder of this paper we consider a generalisation of the foregoing material to
the situation in which the information-flow rate varies in time. The time-dependent problem
is of relevance to many circumstances. For example, there will typically be more activity
in a market during the day than at night—such a consideration is important for short-
term investments. Alternatively, it may be that the annual report of a firm is going to be
published on a specified day—in this case much more information concerning the future of
the firm may be made available on that day than normal.

We begin our analysis of the time-dependent case by considering the situation where
there is a single cash flow DT occurring at time T , and the associated market factor is taken
to be the cash flow itself. In this way we can focus our attention on mathematical issues
arising from the time dependence of the information flow rate. Once these issues have been
dealt with, we shall consider more complicated cash-flow structures in Section XV. For the
market information process we propose an expression of the form

ξt = DT

∫ t

0

σsds + βtT , (55)

where the function {σs}o≤s≤T is taken to be deterministic and nonnegative. We assume that

0 <
∫ T

0
σ2

sds < ∞. The price process {St} of the asset is given by

St = 1{t<T}PtT EQ [DT |Ft ] . (56)

where the market filtration is, as in the previous sections, assumed to be generated by the
information process {ξt}, and Q denotes the risk-neutral measure.

Our first task is to work out the conditional expectation in (56). This can be achieved by
use of a change-of-measure technique, which will be outlined in Section IX. It will be useful,
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however, to state the result first. We define the conditional probability density process
{πt(x)} by setting

πt(x) =
d

dx
Q (DT ≤ x| Ft) . (57)

The following result is obtained:

Proposition 3. Let the information process {ξt} be given by (55). Then the conditional
probability density process {πt(x)} for the random variable DT is given by

πt(x) =
p(x) e

x( 1
T−t

ξt
R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”

∫∞
0

p(x) e
x( 1

T−t
ξt

R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dx

. (58)

We deduce at once from Proposition 3 that the conditional expectation of the random
variable DT is

DtT =

∫∞
0

xp(x) e
x( 1

T−t
ξt

R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dx∫∞

0
p(x) e

x( 1
T−t

ξt
R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dx

. (59)

The associated price process {St} is therefore given by St = 1{t<T}PtT DtT .

IX. CHANGES OF MEASURE FOR BROWNIAN BRIDGES

Since the information process is a Brownian bridge with a random drift, we will require
formulae relating a Brownian bridge with drift in one measure to a standard Brownian bridge
in another measure to establish Proposition 3 . We proceed as follows. First we recall a well-
known integral representation for the Brownian bridge. Let the probability space (Ω,F , Q)
be given, with a filtration {Gt}0≤t<∞, and let {Bt} be a standard {Gt}-Brownian motion.
Then the process {βtT}, defined by

βtT = (T − t)

∫ t

0

1

T − s
dBs, (60)

for 0 ≤ t < T , and by βtT = 0 for t = T , is a standard Brownian bridge over the time interval
[0, T ]. The expression defined by (60) converges to zero as t → T ; see, e.g., Karatzas and
Shreve [16], Protter [19]). The filtration {Gt} is larger than the market filtration {Ft}. In
particular, since {βtT} is adapted to {Gt} we can think of {Gt} as the filtration describing
the information available to an omniscient “insider” who can distinguish between what is
noise and what is not.

Let DT be a random variable on (Ω,F , Q). We assume that DT is G0-measurable and that
DT is independent of {βtT}. Thus the value of DT is known “all along” to the omniscient
insider, but not of course to the typical market agent. For simplicity in what follows we
assume that DT is bounded; this condition can be relaxed with the introduction of an
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appropriate Novikov-type condition; but for definiteness we will not pursue the more general
situation here. Define the deterministic nonnegative process {νt}0≤t≤T by

νt = σt +
1

T − t

∫ t

0

σsds, (61)

and let {ξt} be defined as in (55). We define the process {Λt}0≤t<T by the relation

1

Λt

= exp

(
−DT

∫ t

0

νsdBs − 1
2
D2

T

∫ t

0

ν2
sds

)
. (62)

With these elements in hand, we fix a time horizon U ∈ (0, T ) and introduce a probability
measure BT on GU by the relation

dBT = Λ−1
U dQ. (63)

Then we have the following: (i) the process {W ∗
t }0≤t<U defined by

W ∗
t = DT

∫ t

0

νsds + Bt (64)

is a BT -Brownian motion; (ii) the process {ξt} defined by (55) is a BT -Brownian bridge
and is independent of DT ; (iii) the random variable DT has the same probability law with
respect to BT and Q; (iv) the conditional expectation for any integrable function f(DT ) of
the random variable DT can be expressed in the form

EQ[f(DT )|F ξ
t ] =

EBT

[
f(DT )Λt

∣∣F ξ
t

]
EBT

[
Λt

∣∣F ξ
t

] . (65)

We note that the measure BT is independent of the specific choice of the time horizon U in
the sense that if BT is defined on GU ′ for some U ′ > U , then the restriction of that measure
to GU agrees with the measure BT as already defined.

When we say that {ξt} is a BT -Brownian bridge what we mean, more precisely, is that
ξ0 = 0, that EBT [ξt] = 0, and that EBT [ξsξt] = s(T − t)/T for all s, t such that 0 ≤ s ≤ t ≤ U
for any choice of the time horizon U < T . Thus with respect to the measure BT the process
{ξt}0≤t≤U has the properties of a standard [0, T ]-Brownian bridge that has been truncated
at time U . The fact that {ξt} is a BT -Brownian bridge can be verified as follows. We have:

ξt = DT

∫ t

0

σsds + (T − t)

∫ t

0

1

T − s
dBs

= DT

∫ t

0

σsds + (T − t)

∫ t

0

1

T − s
(dW ∗

s −DT νsds)

= DT

(∫ t

0

σsds− (T − t)

∫ t

0

1

T − s
νsds

)
+ (T − t)

∫ t

0

1

T − s
dW ∗

s

= (T − t)

∫ t

0

1

T − s
dW ∗

s , (66)
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where in the final step we have made use of the relation∫ t

0

1

T − s
νsds =

1

T − t

∫ t

0

σsds. (67)

This relation can be verified explicitly by differentiation, which then gives us (61). In (66)
we see that {ξt} has been given the standard integral representation of a Brownian bridge.
We remark, incidentally, that (65) can be thought of a variation of the Kallianpur-Striebel
formula appearing in the literature of nonlinear filtering (see, for example, Bucy and Joseph
[4], Davis and Marcus [7], Kallianpur and Striebel [15], Krishnan [17], and Liptser and
Shiryaev [18]), the latter being applicable when βtT is replaced by a standard Brownian
motion.

X. DERIVATION OF THE CONDITIONAL DENSITY

We have introduced the idea of measure changes associated with Brownian bridges in
order to introduce formula (65), which involves the density process {Λt}. The process
{Λt} in (62) is defined in terms of the Q-Brownian motion {Bt}. On the other hand the
expectations appearing in (65) are conditional with respect to the information generated
by {ξt}. Therefore, it will be convenient if we express {Λt} directly in terms of the market
information process {ξt}. To do this we substitute (64) in (62) to obtain

Λt = exp

(
DT

∫ t

0

νsdW ∗
s − 1

2
D2

T

∫ t

0

ν2
sds

)
. (68)

We then observe, by differentiating (66), that

dξt = − ξt

T − t
dt + dW ∗

t . (69)

Substituting this relation in (68) we obtain

Λt = exp

[
DT

(∫ t

0

νsdξs +

∫ t

0

1

T − s
νsξsds

)
− 1

2
D2

T

∫ t

0

ν2
sds

]
. (70)

In principle at this point all we need to do is to substitute the (61) into (70) to obtain
the result for {Λt}. In practice, further simplification can be achieved. To this end, we note
that by taking the differential of the coefficient of DT in the exponent of (70) we get

d

(∫ t

0

νsdξs +

∫ t

0

1

T − s
νsξsds

)
= νt

(
dξt +

1

T − t
ξtdt

)
=

(
σt +

1

T − t

∫ t

0

σsds

) (
dξt +

1

T − t
ξtdt

)
= d

(
1

T − t
ξt

∫ t

0

σsds +

∫ t

0

σsdξs

)
. (71)

Then integrating both sides of (71) we obtain:∫ t

0

νsdξs +

∫ t

0

1

T − s
νsξsds =

1

T − t
ξt

∫ t

0

σsds +

∫ t

0

σsdξs. (72)
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Similarly, by taking the differential of the coefficient of −1
2
D2

T in the exponent of (70) and
making use of (61) we find

ν2
t dt =

[
σ2

t + 2
1

T − t
σt

∫ t

0

σsds +
1

(T − t)2

(∫ t

0

σsds

)2
]

dt

= d

[
1

T − t

(∫ t

0

σsds

)2

+

∫ t

0

σ2
sds

]
. (73)

Therefore, by integrating both sides of (73) we obtain an identity for the coefficient of −1
2
D2

T .
It follows by virtue of the two identities just obtained that the change-of-measure density

process {Λt} can be expressed in terms of the information process {ξt}. More explicitly,

Λt = exp

[
DT

(
1

T−t
ξt

∫ t

0
σsds +

∫ t

0
σsdξs

)
− 1

2
D2

T

(
1

T−t

(∫ t

0
σsds

)2

+
∫ t

0
σ2

sds

)]
. (74)

Note that by transforming (70) into (74) we have eliminated a term having {ξt} in the
integrand, thus achieving a considerable simplification. Proposition 3 can then be deduced
if we use equation (67) and the basic relation

Q
(

DT ≤ x| F ξ
t

)
= EQ

[
1{DT≤x}

∣∣F ξ
t

]
. (75)

In particular, since DT and {ξt} are independent under the bridge measure, by virtue of
(67), (74), and (75) we obtain

Q
(

DT ≤ x| F ξ
t

)
=

∫ x

0
p(y) e

y( 1
T−t

ξt
R t
0 σsds+

R t
0 σsdξs)− 1

2
y2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dy∫∞

0
p(y) e

y( 1
T−t

ξt
R t
0 σsds+

R t
0 σsdξs)− 1

2
y2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dy

, (76)

from which we immediately infer Proposition 3 by differentiation.
We conclude this section by noting that an alternative expression for {πt(x)}, written in

terms of {W ∗
t }, is given by

πt(x) =
p(x) exp

(
x

∫ t

0
νudW ∗

u − 1
2
x2

∫ t

0
ν2

udu
)

∫∞
0

p(x) exp
(
x

∫ t

0
νudW ∗

u − 1
2
x2

∫ t

0
ν2

udu
)

dx
. (77)

Similarly, the corresponding expression for {DtT} is given by

DtT =

∫∞
0

xp(x) exp
(
x

∫ t

0
νudW ∗

u − 1
2
x2

∫ t

0
ν2

udu
)

dx∫∞
0

p(x) exp
(
x

∫ t

0
νudW ∗

u − 1
2
x2

∫ t

0
ν2

udu
)

dx
. (78)

XI. DYNAMIC CONSISTENCY

Before we proceed to analyse in detail the dynamics of the price process {St}, first we
shall establish a remarkable dynamical consistency condition satisfied by prices obtained in
the information-based framework. By “consistency” we have in mind the following. Suppose



21

that we re-initialise the information process at an intermediate time s ∈ (0, T ) by specifying
the value ξs of the information at that time. For the framework to be dynamically consistent,
we require that the remainder of the period [s, T ] admits a representation in terms of a
suitably “renormalised” information process. Specifically, we have:

Proposition 4. Let 0 ≤ s ≤ t ≤ T . Then the conditional probability πt(x) can be written
in terms of the intermediate conditional probability πs(x) in the form

πt(x) =
πs(x) e

x( 1
T−t

ηt
R t

s σ̃udu+
R t

s σ̃udηu)− 1
2
x2

“
1

T−t(
R t

s σ̃udu)
2
+

R t
s σ̃2

udu
”

∫∞
0

πs(x) e
x( 1

T−t
ηt

R t
s σ̃udu+

R t
s σ̃udηu)− 1

2
x2

“
1

T−t(
R t

s σ̃udu)
2
+

R t
s σ̃2

udu
”
dx

, (79)

where

σ̃u = σu +
1

T − s

∫ s

0

σvdv (80)

is the re-initialised market information flow rate, and

ηt = ξt −
T − t

T − s
ξs (81)

is the re-initialised information process.

The fact that {ηt}s≤t≤T represents the updated information process bridging the interval
[s, T ] can be seen as follows. First we note that ηs = 0 and that ηT = ξT . Substituting (55)
in (81) we find that

ηt = DT

∫ t

s

σ̃udu + γtT , (82)

where σ̃u is as defined in (80), and

γtT = βtT −
T − t

T − s
βsT . (83)

A short calculation making use of the covariance of the Brownian bridge {βtT} shows that
the Gaussian process {γtT}s≤t≤T is a standard Brownian bridge over the interval [s, T ]. It
thus follows that {ηt} is the information bridge interpolating the interval [s, T ].

To verify (79) we note that (77) can be written as

πt(x) =
πs(x) exp

(
x

∫ t

s
νudW ∗

u − 1
2
x2

∫ t

s
ν2

udu
)

∫∞
0

πs(x) exp
(
x

∫ t

s
νudW ∗

u − 1
2
x2

∫ t

s
ν2

udu
)

dx
. (84)

The identity given in (71) then implies that∫ t

s

νudW ∗
u =

1

T − t
ξt

∫ t

s

σudu +

∫ t

s

σudξu +
( ξt

T − t
− ξs

T − s

) ∫ s

0

σudu

=
1

T − t
ηt

∫ t

s

σ̃udu +

∫ t

s

σ̃udηu, (85)
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where we have made use of (80) and (81). Similarly, the relation in (71) implies∫ t

s

ν2
udu =

1

T − t

(∫ t

0

σudu

)2

− 1

T − s

(∫ s

0

σudu

)2

+

∫ t

s

σ2
udu

=
1

T − t

(∫ t

s

σ̃udu

)2

+

∫ t

s

σ̃2
udu. (86)

Substitution of (85) and (86) into (84) establishes (79). In particular, the form of (79) is
identical to the original formula (58), modulo the indicated renormalisation of the informa-
tion process and the associated information flow rate.

XII. EXPECTED DIVIDEND PROCESS

The goal of sections VIII, IX, and X was to obtain an expression for the conditional
expectation (13) in the case of a single-dividend asset in the situation of a time-dependent
information flow rate. In the analysis of the associated price process it will therefore be useful
to work out the dynamics of the conditional expectation of the dividend. In particular, an
application of Ito’s rule to (59), after some rearrangement of terms, shows that

dDtT = νtVt

(
1

T − t
ξt − νtDtT

)
dt + νtVtdξt, (87)

where {Vt} is the conditional variance of the random variable DT :

Vt =

∫ ∞

0

x2πt(x)dx−
(∫ ∞

0

xπt(x)dx

)2

. (88)

Let us define a new process {Wt} according to the prescription

Wt = ξt +

∫ t

0

1

T − s
ξsds−

∫ t

0

νsDsT ds. (89)

We refer to {Wt} as the “innovation process”. It follows from the definition of {Wt} that

dDtT = νtVt dWt. (90)

Since {DtT} is an {Ft}-martingale we are thus led to conjecture that {Wt} must also be an
{Ft}-martingale. In fact, we have the following result:

Proposition 5. The process {Wt} defined by (89) is a standard {Ft}-Brownian motion
under the risk-neutral measure Q.

Proof. To show this we shall establish that (i) {Wt} is an {F ξ
t }-martingale, and that

(ii) (dWt)
2 = dt. Writing as before EQ

t [−] = EQ[−|F ξ
t ] for the conditional expectation and

letting t ≤ u we have

EQ
t [Wu] = EQ

t [ξu] + EQ
t

[∫ u

0

1

T − s
ξsds

]
− EQ

t

[∫ u

0

νsDsT ds

]
. (91)



23

Splitting the second two terms on the right into integrals between 0 and t, and between t
and u, we thus obtain

EQ
t [Wu] = EQ

t [ξu] +

∫ t

0

1

T − s
ξsds−

∫ t

0

νsDsT ds

+

∫ u

t

1

T − s
EQ

t [ξs]ds−
∫ u

t

νsEQ
t [DsT ]ds. (92)

The martingale property of the conditional expectation implies that EQ
t [DsT ] = DtT for

t ≤ s, which allows us to simplify the last term. To simplify the expression for the conditional
expectation EQ

t [ξs] for t ≤ s we use the tower property of conditional expectation:

EQ
t [βsT ] = EQ

t [E[βsT |HT , βtT ]] = EQ
t [E[βsT |βtT ]]. (93)

for t ≤ s. To calculate the inner expectation E[βsT |βtT ] here we use the fact that the random
variable βsT /(T − s)− βtT (T − t) is independent of βtT and deduce that

E[βsT |βtT ] =
T − s

T − t
βtT , (94)

from which it follows that

EQ
t [βsT ] =

T − s

T − t
EQ

t [βtT ]. (95)

As a result we obtain

EQ
t [ξs] = DtT

∫ s

0

σvdv +
T − s

T − t
EQ

t [βtT ]. (96)

We also recall the definition of {Wt} given by equation (89), which implies that∫ t

0

1

T − s
ξsds−

∫ t

0

νsDsT ds = Wt − ξt. (97)

Therefore, substituting (96) and (97) into (92) we obtain

EQ
t [Wu] = DtT

∫ u

0

σsds + Wt − ξt + DtT

∫ u

t

1

T − s

( ∫ s

0

σvdv
)
ds−DtT

∫ u

t

νsds

+EQ
t [βtT ]. (98)

Next we split the first term into an integral from 0 to t and an integral from t to u, and we
insert the definition (61) of {νt} into the fifth term. The result is:

EQ
t [Wu] = Wt + DtT

∫ t

0

σsds + EQ
t [βtT ]− ξt. (99)

Finally, if we make use of the fact that ξt = EQ
t [ξt], and hence that

ξt = DtT

∫ t

0

σsds + E,Q
t [βtT ], (100)

it follows that {Wt} satisfies the martingale condition. On the other hand, by virtue of (89)

we have (dWt)
2 = dt. We thus conclude that {Wt} is an {F ξ

t }-Brownian motion. �
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XIII. ASSET PRICES AND DERIVATIVE PRICES

We are now in a position to consider in more detail the dynamics of the price process of
an asset paying a single dividend DT in the case of a time-dependent information flow. For
{St} we have St = 1{t<T}PtT DtT , or equivalently

St = 1{t<T}PtT

∫∞
0

xp(x) e
x( 1

T−t
ξt

R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dx∫∞

0
p(x) e

x( 1
T−t

ξt
R t
0 σsds+

R t
0 σsdξs)− 1

2
x2

“
1

T−t(
R t
0 σsds)

2
+

R t
0 σ2

sds
”
dx

. (101)

A straightforward calculation making use of (90) shows that for the dynamics of the price
process we have

dSt = rtStdt + ΓtT dWt, (102)

where the asset price volatility process {ΓtT} is given by

ΓtT = νtPtT Vt., (103)

where Vt is the conditional variance of the dividend:

Vt = EQ
t

[(
DT − EQ

t [DT ]
)2

]
. (104)

It should be evident by virtue of its definition that {Vt} is a supermartingale. More specifi-
cally, for the dynamics of {Vt} we obtain

dVt = −ν2
t V

2
t dt + νtκtdWt, (105)

where κt denotes the third conditional moment of DT , given by

κt = EQ
t

[
(DT −DtT )3

]
. (106)

Although we have derived formula (101) by assuming that the price process is induced by
the market information {ξt}, the result to be shown in Section XIV below demonstrates that
we can regard the dynamical equation (102) for the price process as given, and then deduce
the structure of the underlying information process. The information-based interpretation
of the modelling framework, however, is more appealing. According to this interpretation
there is a flow of market information, which is available to all market participants and is
represented by the filtration generated by the information process {ξt}. Given this informa-
tion, each participant will “act”, in our interpretation, so as to minimise the risk adjusted
future P&L variance associated with the cash flow under consideration. The future P&L
is determined by the value of the random variable DT , and the estimate of DT that min-
imises its variance is indeed given by the conditional expectation (13). By discounting this
expectation with PtT we recover the induced price process {St}.

As for the volatility of the asset price, we note that {ΓtT} is “infinitely stochastic” in
the sense that all the higher-order volatilities (the volatility of the volatility, and so on)
are stochastic. Furthermore, these higher-order volatilities have a natural interpretation:
the volatility of the asset price is determined by the variance of the random cash flow; the
volatility of the volatility is determined by the skewness of DT ; its volatility is determined
by the kurtosis of DT ; and so on.
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The fact that the asset price in the transformed probability measure is given by a function
of a Gaussian random variable means that the pricing of various derivatives is numerically
straightforward. We have seen this already in the case of a constant information-flow rate,
but the result remains valid in the time-dependent case as well. For example, consider a
European-style call option on the asset with strike K and maturity t, where t ≤ T , for which
the price is given as in (23). Then by changing the measure we obtain the simple formula

C0 = P0tEBT

[{∫ ∞

0

(PtT x−K)p(x) exp

(
x

∫ t

0

νsdW ∗
s − 1

2
x2

∫ t

0

ν2
sds

)
dx

}+
]

(107)

for the value of the option. This result should be compared with equation (27). We note

that in the bridge measure the expression
∫ t

0
νsdW ∗

s is a Gaussian random variable with
mean zero and variance

ω2
t =

∫ t

0

ν2
sds, (108)

where ∫ t

0

ν2
sds =

1

T − t

(∫ t

0

σsds

)2

+

∫ t

0

σ2
sds. (109)

Here we have used the relation established in (73). Therefore, if we set

Y = ω−1
t

∫ t

0

νsdW ∗
s , (110)

it follows immediately that Y is a standard normal random variable in the bridge measure.
For the call price we thus have

C0 = P0tEBT

[{∫ ∞

0

(PtT x−K)p(x)eωtxY− 1
2
ω2

t x2

dx

}+
]

, (111)

and hence

C0 = P0t
1√
2π

∫ ∞

y=−∞
e−

1
2
y2

(∫ ∞

x=0

(PtT x−K)p(x)eωtxy− 1
2
ω2

t x2

dx

)+

dy. (112)

We observe that there exists a critical value y = y∗ such that the argument of the “positive-
part-of” function vanishes in the expression above. Thus y∗ is given by∫ ∞

0

(PtT x−K)p(x)eωtxy∗− 1
2
ω2

t x2

dx = 0. (113)

As a consequence the call price can be written in the form

C0 = P0t
1√
2π

∫ ∞

y=y∗
e−

1
2
y2

(∫ ∞

x=0

(PtT x−K)p(x)eωtxy− 1
2
ω2

t x2

dx

)
dy. (114)

The integration in the y variable can be performed, and we deduce the following elementary
representation for the call price:

C0 = P0t

∫ ∞

0

(PtT x−K)p(x)N(ωtx− y∗)dx. (115)
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When the cash flow is represented by a discrete random variable and the information-flow
rate is constant, this result reduces to an expression equivalent to the option pricing formula
derived in Brody, et al. [3]. More generally, if the cash flow is a continuous random variable
and the information flow rate is constant then we recover the expression (31) given in section
IV (see also Rutkowski and Yu [20]).

We conclude this section with the remark that the simulation of the price process {St}
is straightforward in the present scheme. First, we generate a Brownian trajectory {γt(ω)},
and form the associated Brownian bridge trajectory {βtT (ω)}. We then select a value for
DT by a method consistent with the a priori probability density p(x), and substitute these

in the formula ξt(ω) = DT (ω)
∫ t

0
σsds + βtT (ω) for some appropriate choice of {σt}. Finally,

substitution of {ξt(ω)} in (101) gives us a simulated path {St(ω)}. The statistics of the
price process {St} in the risk-neutral measure are then readily obtained by repeating this
procedure, the results of which can be used to price derivatives, or to calibrate the time-
dependent information-flow rate {σt}.

XIV. EXISTENCE OF THE INFORMATION PROCESS

In this section we consider what might appropriately be called the “inverse” problem
for information-based asset pricing. In the inverse problem the idea is to begin with the
conditional probability density process {πt(x)} and to construct from it the independent
degrees of freedom represented by the X-factor DT and the noise {βtT}. The setup can
be described more specifically as follows. On the probability space (Ω,F , Q) let {Wt} be
a Brownian motion and let {Ft} be the filtration generated by {Wt}. Let DT be an FT -
measurable random variable, and let {πt(x)} denote the associated conditional probability
density process. We assume that {πt(x)} satisfies the stochastic differential equation

dπt(x) = νt(x−DtT )πt(x) dWt, (116)

with a prescribed initial condition π0(x) = p(x), where {νt} is given by (61), and DtT is the
conditional expectation

DtT =

∫ ∞

0

xπt(x) dx. (117)

We define the process {ξt} as follows:

ξt = (T − t)

∫ t

0

1

T − s

(
dWs + νsDsT ds

)
. (118)

Then we have the following result:

Proposition 6. The random variables DT and βtT = ξt − DT

∫ t

0
σsds are Q-independent

for all t ∈ [0, T ]. Furthermore, the process {βtT} is a Q-Brownian bridge.

Proof. To establish the independence of DT and βtT it suffices to verify that

EQ[exβtT +yDT ] = EQ[exβtT ] EQ[eyDT ] (119)

for arbitrary x, y. Using the tower property of conditional expectation we have

EQ[exβtT +yDT ] = EQ
[
exξt EQ

t

[
e(y−x

R t
0 σsds)DT

]]
, (120)
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where we have inserted the definition of the βtT given in the statement of the Proposition.
We consider the inner expectation first. From equation (65) for the conditional expectation
of a function of the random variable DT we deduce that

EQ
t

[
e(y−x

R t
0 σsds)DT

]
= Φ−1

t

∫ ∞

0

p(z) e(y−x
R t
0 σsds)z ez

R t
0 νudW ∗

u− 1
2
z2

R t
0 ν2

ududz, (121)

where the process {Φt} is defined by

Φt =

∫ ∞

0

p(z) exp

(
z

∫ t

0

νudW ∗
u − 1

2
z2

∫ t

0

ν2
udu

)
dz. (122)

In other words,
Φt = EQ[Λt|F ξ

t ]. (123)

We now change the probability measure from Q to BT , so that the term Φ−1
t appearing in

(121) drops out to give us

EQ
[
exξt EQ

t

[
e(y−x

R t
0 σsds)DT

]]
=

∫ ∞

0

p(z) EBT

[
ex(T−t)

R t
0

1
T−s

dW ∗
s +(y−x

R t
0 σsds)z+z

R t
0 νsdW ∗

s − 1
2
z2

R t
0 ν2

sds
]
dz

=

∫ ∞

0

p(z) e(y−x
R t
0 σsds)z− 1

2
z2

R t
0 ν2

sds+ 1
2

R t
0 α2

sds EBT

[
e

R t
0 αsdW ∗

s − 1
2

R t
0 α2

sds
]
dz, (124)

where αs = x(T − t)/(T − s) + zνs, and therefore

EQ[exβtT +yDT ] =

∫ ∞

0

p(z) e(y−x
R t
0 σsds)z− 1

2
z2

R t
0 ν2

sds+ 1
2

R t
0 α2

sdsdz (125)

Furthermore, making use of relation (67) we have

exp

(
−xz

∫ t

0

σsds− 1

2
z2

∫ t

0

ν2
sds +

1

2

∫ t

0

α2
sds

)
= exp

(
t(T − t)

2T
x2

)
. (126)

As a consequence, we immediately infer from (125) that

EQ [
exβtT +yDT

]
=

(∫ ∞

0

p(z) eyzdz

)
exp

(
t(T − t)

2T
x2

)
, (127)

and thus factorises into the product of a function of x and a function of y. This establishes
the independence of {βtT} and DT .

Equation (127) also shows that the process {βtT} is Q-Gaussian, with mean zero and
variance t(T − t)/T . To establish that {βtT} is a Brownian bridge, we must show that for
s ≤ t the covariance of βsT and βtT is given by s(T − t)/T . Alternatively, it suffices to
analyse the moment generating function E[exβsT +yβtT ]. We proceed as follows. First, using
the tower property we have

EQ [
exβsT +yβtT

]
= E

[
exξs+yξt−(x

R s
0 σudu+y

R t
0 σudu)DT

]
= E

[
exξs+yξtEQ

t

[
e−(x

R s
0 σudu+y

R t
0 σudu)DT

]]
. (128)
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Next, by use of formula (65), the inner expectation can be carried out to give

EQ [
exβs+yβtT

]
= E

[
exξs+yξtΦ−1

t

∫ ∞

0

p(z) e−(x
R s
0 σudu+y

R t
0 σudu)z ez

R t
0 νudW ∗

u− 1
2
z2

R t
0 ν2

ududz

]
.(129)

If we change the probability measure to BT the process {Φt} in the denominator drops out,
and we have

EQ [
exβs+yβtT

]
=

∫ ∞

0

p(z) e−(x
R s
0 σudu+y

R t
0 σudu)z− 1

2
z2

R t
0 ν2

udu EBT

[
exξs+yξt+z

R t
0 νsdW ∗

s

]
dz.(130)

Let us consider the inner expectation first. By defining au = x(T − s)/(T − u) and bu =
y(T − t)/(T − u) + zνu we can write

EBT

[
exξs+yξt+z

R t
0 νsdW ∗

s

]
= EBT

[
e

R s
0 audW ∗

u+
R t
0 budW ∗

u

]
. (131)

However, since {W ∗
t } is a BT -Brownian motion, using the properties of Gaussian random

variable, we find that

EBT

[
e

R s
0 audW ∗

u+
R t
0 budW ∗

u

]
= exp

{
1
2

(∫ s

0

a2
udu +

∫ t

0

b2
udu + 2

∫ s

0

aubudu

)}
. (132)

Substituting the definitions for {au} and {bu} into the right-hand side of (132) and combining
the result with the remaining terms in the exponent of the right-hand side of (130) we find
that the terms involving the integration variable z drop out, and we are left with the integral
of the density function p(z), which is of course unity. Gathering the remaining terms we
then obtain

EQ [
exβsT +yβtT

]
= exp

{
1
2

(
x2 s(T − s)

T
+ y2 t(T − t)

T
+ 2xy

s(T − t)

T

)}
. (133)

It follows that the covariance of βsT and βtT for s ≤ t is given by

∂2

∂x∂y
EQ [

exβsT +yβtT
]∣∣∣∣

x=y=0

=
s(T − t)

T
. (134)

This establishes the assertion that {βtT} is a Q-Brownian bridge. �
The result above shows that, for the class of price processes we are considering, even if

at the outset we take the “usual” point of view in financial modelling, and regard the price
process of the asset as being adapted to some “prespecified” filtration, nevertheless it is
possible to deduce the structure of the underlying information-based model.

XV. MULTI-FACTOR MODELS WITH A TIME-DEPENDENT INFORMATION
FLOW RATE

Let us now turn to consider the case of a single cash flow DT that depends on a multiplicity
of market factors {Xα

Tk
}α=1,...,mk

k=1,...,n , where we have the n pre-designated information dates
{Tk}k=1,2,...,n, and where for each value of k we have a set of mk market factors. For simplicity
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we set T = Tn. Each market factor Xα
Tk

is associated with a corresponding information
process defined by

ξα
tTk

= Xα
Tk

∫ t

0

σα
sTk

ds + βα
tTk

, (135)

where Xα
Tk

and βα
tTk

are independent. It should be evident that although the random variable
DT representing the cash flow is FT -measurable, the values of some of the X-factors upon
which it depends may be revealed at earlier times. That is to say, the uncertainties arising
from some of the economic elements affecting the value of the cash flow at time T may
vanish before that time. One of the advantages of the present modelling framework is the
fact that we are able to accommodate such complicated structures in a tractable theory.

Since the X-factors are independent, it follows that for each market factor the asso-
ciated conditional density process πα

tTk
(x) takes the form given in equation (58), and the

corresponding dynamical evolution is given by

dπα
tTk

= να
tTk

(
xα

k − EQ [
Xα

Tk
|Ft

])
πα

tTk
dW αk

t . (136)

The function να
tTk

appearing in this equation is given by an expression of the form (61):

να
tTk

= σα
tTk

+
1

Tk − t

∫ t

0

σα
sTk

ds. (137)

and the innovation process {Wαk
t } is defined in terms of {ξα

tTk
} via a relation of the form

Wαk
t = ξα

tTk
+

∫ t

0

1

Tk − s
ξα
sTk

ds−
∫ t

0

να
sTk

Xα
Tk

ds. (138)

The conditional expectation EQ[DT |Ft] is thus given by the multi-dimensional integral

DtT =

∫ ∞

0

· · ·
∫ ∞

0

∆T (x1
1, . . . , x

m1
1 , . . . , x1

n, . . . , x
mn
n )

×πt1(x
1
1) · · ·πt1(x

m1
1 ) · · ·πtn(x1

n) · · ·πtn(xmn
n ) dx1

1 · · · dxm1
1 · · · dx1

n · · · dxmn
n . (139)

The price of the asset for t < T is St = PtT DtT . A straightforward application of Ito’s rule
then establishes the following result:

Proposition 7. The price process {St} of an asset that pays a single dividend DT at time
T (= Tn) depending on the market factors {Xα

Tk
}α=1,2,...,mk

k=1,2,...n , satisfies the dynamical equation

dSt = rtStdt +
n∑

k=1

mk∑
α=1

να
tTk

Covt[∆T , Xα
Tk

] dWαk
t , (140)

where
∆T = ∆T

(
Xα

T1
, . . . , Xα

Tk

)
. (141)

Here Covt[∆T , Xα
Tk

] denotes the covariance between the cash-flow function ∆T and the market
factor Xα

Tk
, conditional on the information Ft generated by the market information processes

{ξα
tTk
} up to time t.
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In the more general case of an asset that pays multiple dividends (see Section VI) the
price process is given by

St =
n∑

k=1

1{t<Tk}PtTk
EQ

[
∆Tk

(
{Xα

Tj
}α=1,2,...,mj

j=1,...,k

)∣∣∣Ft

]
. (142)

Proposition 8. The price process {St} of an asset that pays the random dividends DTk
on

the cash flow dates Tk (k = 1, . . . , n) satisfies the dynamical equation

dSt = rtStdt +
n∑

k=1

mk∑
α=1

1{t<Tk}ν
α
tTk

Covt[∆Tk
, Xα

Tk
] dWαk

t + ∆Tk
d1{t<T}, (143)

where
∆Tk

= ∆Tk

(
{Xα

Tj
}α=1,...,mj

j=1,...,k

)
. (144)

Here Covt[∆Tk
, Xα

Tk
] denotes the covariance between the dividend structure ∆Tk

and the mar-
ket factor Xα

Tk
, conditional on the market information Ft.

We conclude that the multi-factor, multi-dividend situation is also fully tractable when
the information-flow rates associated with the various market factors are time dependent.
A straightforward extension of Proposition 8 then allows us to formulate the joint price
dynamics of a system of assets, the associated dividend flows of which may depend on com-
mon market factors. As a consequence, it follows that a rather specific model for stochastic
volatility and correlation emerges for such a system of assets, and it is one of the principle
conclusions of this paper that such a model, which is entirely natural in character, can in-
deed be formulated. The information-based “X-factor” approach presented here thus offers
a fundamental new insight into the nature of volatility and correlation, and as such may find
applications in a number of different areas of financial risk analysis. We have in mind, in
particular, applications to equity portfolios, credit portfolios, and insurance, all of which ex-
hibit important intertemporal market correlation effects. We also have in mind the problem
of firm-wide risk management and optimal capital allocation for banking institutions.
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